October 30, 2014

Scrolling Headlines:

Halloween Special Issue -

Thursday, October 30, 2014

UM alumni hopeful for their up-and-coming snowboard company -

Thursday, October 30, 2014

UMass hockey looks to end road trip on a high note with weekend series against Maine -

Thursday, October 30, 2014

#WrongDoor: Why I am not surprised? -

Thursday, October 30, 2014

B-horror films: hits and misses of the nightmare genre -

Thursday, October 30, 2014

Appreciating campus workers -

Thursday, October 30, 2014

UMass hosts Ebola panel to address concerns of the public -

Thursday, October 30, 2014

UMass Democrats hope to get more students connected -

Thursday, October 30, 2014

The broke college student horror comic buyers guide -

Thursday, October 30, 2014

UMass Republican Club: Not just for Republicans -

Thursday, October 30, 2014

Five reasons why Halloween is the best holiday -

Thursday, October 30, 2014

To live and die and live again -

Thursday, October 30, 2014

The anatomy of a horror game -

Thursday, October 30, 2014

Berger has first shot at securing starting role with UMass basketball -

Thursday, October 30, 2014

Robert Johnson’s deal with the devil -

Thursday, October 30, 2014

Humans vs. Zombies: UMass’ most dangerous game -

Thursday, October 30, 2014

Group Halloween costumes inspired by the roles of Hollywood icons -

Thursday, October 30, 2014

A haunting at UMass -

Thursday, October 30, 2014

At the end of your rope? Write about it. -

Thursday, October 30, 2014

UMass men’s soccer heads down to Carolina for a weekend pair of games -

Thursday, October 30, 2014

The science of snowflakes

Courtesy of University of California Davis

“No two snowflakes are alike.” 

That’s an old adage, quite common in weather lore when the unique nature of a snowflake is described, and I’m sure you’ve heard it at least once in your life. However, this rule of thumb is only right to a point: snowflakes can indeed look exactly alike, only differing in the abundance of certain isotopes or the number of water molecules, thus making them technically not identical. When I read this, my childhood notions regarding the magic that was snow melted like Frosty during spring thaw. Yet, despite this elimination of wonder, the science behind the fascinating patterns that make up the structures of snowflakes infused a strange beauty back into them.

One of the biggest proponents to the formation of a snowflake is clouds. There are high, middle, and low clouds, and each shapes its water vapor differently. High clouds normally produce “six-sided hexagonal crystals,” according to Anne Marie Helmenstine, PhD.  In the middle clouds, flatter six-sided crystals and needles are made. Last are the lower clouds where random assortments of six-sided shapes are generated. Temperature affects these shapes by making them more or less detailed to the human eye. Naturally, it’s the higher temperatures that make the snowflakes harder to form, thus the shapes are smoother without as much structural design. In general, the temperatures also yield specific patterns of snowflakes. The warmer ends of freezing (25-32 degrees Fahrenheit) produce the flimsy hexagonal structures. When the temperatures cool down, the shapes progress from the weak hexagons to needles, then hollow columns, sector plates, and dendrites. The latter shape is the most detailed to observe, but we have to wait for temperatures as low as ten degrees Fahrenheit to begin seeing them.

When observing a snowflake, the aesthetic qualities of their structure strike the human eye quite dramatically. One of the reasons is because a snowflake, for the most part, is symmetrical. In general, this is a result of the water molecules arranging themselves in an order that suits them best when they are in a solid state as opposed to a liquid one. This arrangement is based off the hydrogen bonds between these molecules. In the process of making these bonds, the water molecules try to get rid of as many “repulsive forces” as possible, and make as many “attractive forces” in return, according to About.com. The delicate balance they create results in the shapes that were being formed in the water vapor.

Surprisingly enough, snowflakes are not just water vapor.  They contain dirt particles too. As they form, dirt and dust particles make their way into the structure and become an integral part of the weight of the snowflake as well as provide it with durability, states Dr. Helmenstine. So, the next time you open your mouth to catch a snowflake on your tongue, think about that!

Eliza Mitchell can be reached for comment at elizam@student.umass.edu

Comments
One Response to “The science of snowflakes”
  1. ceilea says:

    wow i love snow it is fun

Leave A Comment