October 31, 2014

Scrolling Headlines:

Front to Back: Week of Oct. 27, 2014 -

Friday, October 31, 2014

Blog Post: What the FAC -

Friday, October 31, 2014

Halloween Special Issue -

Thursday, October 30, 2014

UM alumni hopeful for their up-and-coming snowboard company -

Thursday, October 30, 2014

UMass hockey looks to end road trip on a high note with weekend series against Maine -

Thursday, October 30, 2014

#WrongDoor: Why I am not surprised? -

Thursday, October 30, 2014

B-horror films: hits and misses of the nightmare genre -

Thursday, October 30, 2014

Appreciating campus workers -

Thursday, October 30, 2014

UMass hosts Ebola panel to address concerns of the public -

Thursday, October 30, 2014

UMass Democrats hope to get more students connected -

Thursday, October 30, 2014

The broke college student horror comic buyers guide -

Thursday, October 30, 2014

UMass Republican Club: Not just for Republicans -

Thursday, October 30, 2014

Five reasons why Halloween is the best holiday -

Thursday, October 30, 2014

To live and die and live again -

Thursday, October 30, 2014

The anatomy of a horror game -

Thursday, October 30, 2014

Berger has first shot at securing starting role with UMass basketball -

Thursday, October 30, 2014

Robert Johnson’s deal with the devil -

Thursday, October 30, 2014

Humans vs. Zombies: UMass’ most dangerous game -

Thursday, October 30, 2014

Group Halloween costumes inspired by the roles of Hollywood icons -

Thursday, October 30, 2014

A haunting at UMass -

Thursday, October 30, 2014

UMass scientists awarded $1M Keck Foundation grant

Courtesy of UMass.edu

A group of University of Massachusetts physicists were recently awarded a three-year $1 million grant from the W.M. Keck Foundation to carry out research on ultra-thin films, according to a University press release.

Physicists Narayanan Menon, Benny Davidovitch and Christopher Santangelo, along with polymer scientist Thomas Russell, were recently awarded the grant in order to explore and develop the science behind delivering ultra-thin films into liquids.

According to the release, the W.M. Keck Science and Engineering Program seeks to extend funding to programs with “endeavors that are distinctive and novel in their approach. It encourages projects that are high-risk with the potential for transformative impact.”

Menon and his team will work on a series of projects over the three-year period, with each project “more difficult than the last,” the release said.

Their main focus will be creating a material that will begin crumpled up, but once the materials are introduced to a particular environment, will expand to create a super thin barrier between two materials.

In the release, Menon describes a situation where a ball, which appears to be a simple crumpled piece of paper, “instantly unfurls” when thrown at a wall, covering the wall in a sheet of paper that is up to “10,000 times thinner” than a normal sheet of paper.

“We have preliminary experiments that indicate the feasibility of this approach,” Menon said in the release. “But we need many further experiments and theoretical work to understand and control how such a film spontaneously and explosively unfurls when it is placed between two liquids.”

Each member of the team of collaborators brings their own set of expertise to the lab bench. According to the release, Menon’s lab works with the behavioral qualities of soft materials, while Davidovitch and Santangelo maintain backgrounds in the “role of geometry and mechanics in the formation of patterns.” Russell, the team’s final member, is an expert in interfacial materials and their assembly.

Though a majority of the grant money will be used to assemble a team of graduate students and researchers, that team will be pivotal in performing the many experiments over the next three years that won them the grant.

Topics that the team hopes to tackle include the “dynamics of uncrumpling, interactions between crumpled objects dispersed in a fluid, elasticity of heterogeneous and anisotropic films and the mechanics of an interface laden with a mosaic of elastic sheets,” according to the release.

Should the team make significant headway in its research, practical applications could include bandaging leaks, sequestering oil spills or shrink-wrap drops, according to the release.

Jeffrey Okerman can be reached at jokerman@student.umass.edu.

Leave A Comment