Scrolling Headlines:

SLIDESHOW: Third Eye Blind rocks Calvin Theatre in Northampton -

Tuesday, October 13, 2015

U.S. schools react to protect students as the trend of mass shootings at colleges continues -

Tuesday, October 13, 2015

UMass fails to pay an estimated 400 graduate students on first payday -

Tuesday, October 13, 2015

UMass women’s rowing repeats success of opening weekend in back-to-back meets -

Tuesday, October 13, 2015

Men’s and women’s swim and dive teams dominate Colgate Fall Classic -

Tuesday, October 13, 2015

Mark Morris provides instant impact in return to UMass lineup -

Tuesday, October 13, 2015

Week six sees fireworks of offense for MAC football -

Tuesday, October 13, 2015

Men’s XC earns top five finish at New England Championships -

Tuesday, October 13, 2015

UMass selected to host largest student entrepreneur competition, with a million dollar prize -

Tuesday, October 13, 2015

The many ice cream flavors of Flayvors -

Tuesday, October 13, 2015

No legitimacy in pop music -

Tuesday, October 13, 2015

Guns are here to stay -

Tuesday, October 13, 2015

The Harp, a North Amherst landmark, blends change with tradition -

Tuesday, October 13, 2015

REPORT: UMass football expected to announce scheduling agreements with BC, UConn, FIU -

Monday, October 12, 2015

UMass field hockey loses third consecutive game Sunday in Pennsylvania -

Sunday, October 11, 2015

UMass women’s soccer’s road struggles continue in loss to George Washington -

Sunday, October 11, 2015

UMass men’s soccer fights to scoreless tie against Saint Louis Saturday -

Sunday, October 11, 2015

UMass football overpowered in MAC opener against Bowling Green -

Saturday, October 10, 2015

UMass football fails to answer challenge in shootout loss against defending MAC East champion Bowling Green -

Saturday, October 10, 2015

Zachary Simeone placed under house arrest after allegedly threatening ex-girlfriend, UMass campus -

Saturday, October 10, 2015

UMass astronomer solves mystery of Milky Way’s black hole

Courtesy of Wikimedia Commons

While most astronomers agree that a massive black hole sits at the center of every major galaxy in the universe, it is less clear how the gravitational pull of these regions interacts with the matter surrounding them.

Now, an international team of scientists led by University of Massachusetts astronomy professor Daniel Wang has discovered why the black hole at the center of the Milky Way galaxy emits less radiation than expected.

In their study published last month in the journal “Science,” Wang and his colleagues analyzed nearly five weeks of data from NASA’s Chandra X-ray Observatory telescope. They found that the black hole, called Sagittarius A-star, rejects 99 percent of the gaseous material falling toward it. Only a tiny portion makes it past the point of no return.

“It’s like Occupy Wall Street,” Wang said. “In this case, less than one percent of particles sacrifice themselves and give energy and momentum back to 99 percent for them to escape.”

Black holes are often portrayed as having an indiscriminate appetite, consuming every bit of cosmic material thrown their way. But these new findings tell a different story.

Wang related the process to pouring water into a sink. Gravity has no trouble pulling cold water down through the drain. But if you heat up the water, you create steam and much less of the material makes it into the drain. Most of it escapes into the air.

In the early universe, there was much more cool material floating around, which, like the cold water flowing into the drain, was easier to get into the black hole. As it consumed all this material, it became more and more massive and so did our galaxy.

The black hole was much brighter in those days because as matter fell into it, a huge amount of energy was released. Wang’s research suggests that the black hole is so faint today because very little material makes it inside, which means its growth has slowed to a crawl.

By analyzing the spectrum of X-ray radiation from the region, scientists were also able to rule out a previous theory that the radiation might have been coming from a high concentration of low-mass stars around the black hole.

It turns out there are many massive stars around the black hole, which are incredibly hot and produce strong winds, sweeping up material off the star’s surface. That material is dragged toward the black hole, but most of it seems to be ejected back into space, according to the study.

“This is the first evidence of this link between this accretion material towards the black hole and the origin of the matter, which appears to be the winds from massive stars,” Wang said.

The gas and dust around the black hole form a spiraling disc, explained James Lowenthal, an astronomy professor at Smith College. He said the black hole represents a “tiny fraction” of the Milky Way’s mass, yet it controls millions of stars.

In response to the new findings, Lowenthal said, “I’m delighted to see that we have the brightest, sharpest X-ray view.”

Despite these advances, Wang said astronomers do not yet have a good understanding of how black holes work. In fact, they cannot directly prove their existence because gravity prevents everything inside, including light, from escaping their grip.

“Right now we infer because when you have such a large concentration of matter in such small place there’s no alternative explanation,” Wang said.

That could change in the near future thanks to a partnership between UMass and Mexico’s National Institute of Astrophysics, Optics and Electronics. The two institutions operate one of the world’s largest telescopes on top of an inactive volcano in Mexico. After finishing touches are added to the Large Millimeter Telescope, researchers plan to point it toward Sagittarius A-star and, with the help of other giant telescopes around the world, capture the very first images of the black hole’s shadow.

In the meantime, astronomers are eagerly watching a cold gas cloud, called G2, which appears to be on course to collide with the black hole in the next few months. This rare event could answer many puzzling questions about the black hole’s behavior .

David Barnstone can reached at


One Response to “UMass astronomer solves mystery of Milky Way’s black hole”
  1. Thaddeus Buttmunch says:

    WHAT?! No Comments on this Cosmically important Story?

    only the Electric Theory of the Universe adequately explains this Mystery.

Leave A Comment